Ultrafast Transient Spectroscopy of Polymer/Fullerene Blends for Organic Photovoltaic Applications

نویسندگان

  • Sanjeev Singh
  • Zeev Valy Vardeny
چکیده

We measured the picoseconds (ps) transient dynamics of photoexcitations in blends of regio-regular poly(3-hexyl-thiophene) (RR-P3HT) (donors-D) and fullerene (PCBM) (acceptor-A) in an unprecedented broad spectral range of 0.25 to 2.5 eV. In D-A blends with maximum domain separation, such as RR-P3HT/PCBM, with (1.2:1) weight ratio having solar cell power conversion efficiency of ~4%, we found that although the intrachain excitons in the polymer domains decay within ~10 ps, no charge polarons are generated at their expense up to ~1 ns. Instead, there is a build-up of charge-transfer (CT) excitons at the D-A interfaces having the same kinetics as the exciton decay. The CT excitons dissociate into separate polarons in the D and A domains at a later time (>1 ns). This "two-step" charge photogeneration process may be typical in organic bulk heterojunction cells. We also report the effect of adding spin 1/2 radicals, Galvinoxyl on the ultrafast photoexcitation dynamics in annealed films of RR-P3HT/PCBM blend. The addition of Galvinoxyl radicals to the blend reduces the geminate recombination rate of photogenerated CT excitons. In addition, the photoexcitation dynamics in a new D-A blend of RR-P3HT/Indene C60 trisadduct (ICTA) has been studied and compared with the dynamics in RR-P3HT/PCBM.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determining the optimum morphology in high-performance polymer-fullerene organic photovoltaic cells

The morphology of bulk heterojunction organic photovoltaic cells controls many of the performance characteristics of devices. However, measuring this morphology is challenging because of the small length-scales and low contrast between organic materials. Here we use nanoscale photocurrent mapping, ultrafast fluorescence and exciton diffusion to observe the detailed morphology of a high-performa...

متن کامل

Vertical Phase Separation in Poly(3-hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells

Amethodwhichenables the investigationof theburied interfaceswithoutaltering the properties of the polymer films is used to study vertical phase separation of spin-coated poly(3-hexylthiophene) (P3HT):fullerene derivative blends. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) analysis reveals the P3HT enrichment at the free (air) surfaces and abundanceof fullerene deriv...

متن کامل

A close look at charge generation in polymer:fullerene blends with microstructure control.

We reveal some of the key mechanisms during charge generation in polymer:fullerene blends exploiting our well-defined understanding of the microstructures obtained in pBTTT:PCBM systems via processing with fatty acid methyl ester additives. Based on ultrafast transient absorption, electro-absorption, and fluorescence up-conversion spectroscopy, we find that exciton diffusion through relatively ...

متن کامل

Titanium dioxide/silicon hole-blocking selective contact to enable double- heterojunction crystalline silicon-based solar cell

Articles you may be interested in High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer Carrier recombination losses in inverted polymer: Fullerene solar cells with ZnO hole-blocking layer from transient photovoltage and impedance spectroscopy techniques High efficiency double heterojunction polymer photovoltaic cells u...

متن کامل

Polaron pair mediated triplet generation in polymer/fullerene blends

Electron spin is a key consideration for the function of organic semiconductors in light-emitting diodes and solar cells, as well as spintronic applications relying on organic magnetoresistance. A mechanism for triplet excited state generation in such systems is by recombination of electron-hole pairs. However, the exact charge recombination mechanism, whether geminate or nongeminate and whethe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2013